Genetic analysis of parasitism in the soybean cyst nematode Heterodera glycines.
نویسندگان
چکیده
A genetic analysis of parasitic ability in the soybean cyst nematode Heterodera glycines was performed. To identify and characterize genes involved in parasitism, we developed three highly inbred H. glycines lines, OP20, OP25 and OP50, for use as parents for controlled crosses. Through these crosses, we have identified genes in the inbred parents that control reproduction of the nematode on hosts that carry resistance genes. These genes, designated as ror-* for reproduction on a resistant host, segregate in a normal Mendelian fashion as independent loci. Host range tests of F1 generation progeny indicated that at least one parasitism gene in both the OP20 and OP50 lines for host PI 88788 was dominant. Parasitism genes in OP50 for hosts "Peking" and PI 90763 are recessive. Two types of single female descent populations, a single backcrossed BC1F2-derived and a double backcrossed BC2F1-derived, were established on the susceptible soybean cultivar "Lee 68." Host range tests for parasitism in these lines demonstrated the presence of two independent genes in OP50, one for host PI 88788 designated ror-1 and one for host PI 90763 designated ror-2. OP20 carries two independent genes for parasitism on PI 88788, designated as alleles kr3 and kr4.
منابع مشابه
The soybean cyst nematode, Heterodera glycines: a genetic model system for the study of plant-parasitic nematodes.
Despite advances in understanding plant responses to nematode infection, little information exists regarding parasitic mechanisms. Recently, it has become possible to perform genetic analysis of soybean cyst nematode. Integration of classic and reverse genetics and genomic approaches for the parasite, with host genetics and genomics will expand our knowledge of nematode parasitism.
متن کاملAnalysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines.
Heterodera glycines is an obligate plant parasite capable of biochemically and developmentally altering its host's cells in order to create a specialized feeding cell. Although the exact mechanism of feeding cell morphogenesis remains a mystery, the nematode's ability to manipulate the plant is thought to be due in part to horizontal gene transfers (HGTs). A bioinformatic screen of the nematode...
متن کامل“Cyst-ained” research into Heterodera parasitism
Nematodes are roundworms that constitute the phylum Nematoda. Only a small fraction of nematode genera contains plant-parasitic or animal-parasitic species, while the majority of nematodes are free-living [1]. Heterodera glycines, the soybean cyst nematode, is a plant-parasitic nematode causing major damage to soybean production worldwide. Annual United States yield loss estimates due to H. gly...
متن کاملShort- and long-term tillage effects on Heterodera glycines reproduction in soybean monoculture in west Tennessee
Soybean cyst nematode, Heterodera glycines has been documented as the pathogen most consistently causing yield loss in US soybean production fields almost since its discovery in the US. No-tillage has been adopted in much of the soybean production areas to preserve soil and nutrients. The impact of this production practice change on soybean cyst nematode has been evaluated since the introductio...
متن کاملEighteen New Candidate Effectors of the Phytonematode Heterodera glycines Produced Specifically in the Secretory Esophageal Gland Cells During Parasitism.
Heterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H. glycines produces an arsenal of effector proteins in the secretory esophageal gland cells. More than 60 H. glycines candidate effectors were identified in previous gland-cell-mining projects. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 146 4 شماره
صفحات -
تاریخ انتشار 1997